vuecore.wgcna module#
- vuecore.wgcna.get_heatmap(df, colorscale=None, color_missing=True)[source]#
This function plots a simple Plotly heatmap.
- Parameters:
df – pandas dataframe containing experimental data, with samples/subjects as rows and features as columns.
colorscale (list[list]) – heatmap colorscale (e.g. [[0,’#67a9cf’],[0.5,’#f7f7f7’],[1,’#ef8a62’]]). If colorscale is not defined, will take [[0, ‘rgb(255,255,255)’], [1, ‘rgb(255,51,0)’]] as default.
color_missing (bool) – if set to True, plots missing values as grey in the heatmap.
- Returns:
Plotly object figure.
- vuecore.wgcna.get_module_color_annotation(map_list, col_annotation=False, row_annotation=False, bygene=False, module_colors=[], dendrogram=[])[source]#
This function takes a list of values, converts them into colors, and creates a new plotly object to be used as an annotation. Options module_colors and dendrogram only apply when map_list is a list of experimental features used in module eigenegenes calculation.
- Parameters:
map_list (list) – dendrogram leaf labels.
col_annotation (bool) – if True, adds color annotations as a row.
row_annotation (bool) – if True, adds color annotations as a column.
bygene (bool) – determines wether annotation colors have to be reordered to match dendrogram leaf labels.
module_colors (list) – dendrogram leaf module color.
dendrogram (dict) – dendrogram represented as a plotly object figure.
- Returns:
Plotly object figure.
Note
map_list and module_colors must have the same length.
- vuecore.wgcna.plot_complex_dendrogram(dendro_df, subplot_df, title, dendro_labels=[], distfun='euclidean', linkagefun='average', hang=0.04, subplot='module colors', subplot_colorscale=[], color_missingvals=True, row_annotation=False, col_annotation=False, width=1000, height=800)[source]#
This function plots a dendrogram with a subplot below that can be a heatmap (annotated or not) or module colors.
- Parameters:
dendro_df – pandas dataframe containing data used to generate dendrogram, columns will result in dendrogram leaves.
subplot_df – pandas dataframe containing data used to generate plot below dendrogram.
title (str) – the title of the figure.
dendro_labels (list) – list of strings for dendrogram leaf nodes labels.
distfun (str) – distance measure to be used (‘euclidean‘, ‘maximum‘, ‘manhattan‘, ‘canberra‘, ‘binary‘, ‘minkowski‘ or ‘jaccard‘).
linkagefun (str) – hierarchical/agglomeration method to be used (‘single‘, ‘complete‘, ‘average‘, ‘weighted‘, ‘centroid‘, ‘median‘ or ‘ward‘).
hang (float) – height at which the dendrogram leaves should be placed.
subplot (str) – type of plot to be shown below the dendrogram (´module colors´ or ´heatmap´).
subplot_colorscale (list) – colorscale to be used in the subplot.
color_missingvals (bool) – if set to True, plots missing values as grey in the heatmap.
row_annotation (bool) – if True, adds a color-coded column at the left of the heatmap.
col_annotation (bool) – if True, adds a color-coded row at the bottom of the heatmap.
width (int) – the width of the figure.
height (int) – the height of the figure.
- Returns:
Plotly object figure.
- vuecore.wgcna.plot_dendrogram_guidelines(Z_tree, dendrogram)[source]#
This function takes a dendrogram tree dictionary and its plotly object and creates shapes to be plotted as vertical dashed lines in the dendrogram.
- Parameters:
Z_tree (dict) – dictionary of data structures computed to render the dendrogram. Keys: ‘icoords’, ‘dcoords’, ‘ivl’ and ‘leaves’.
dendrogram – dendrogram represented as a plotly object figure.
- Returns:
List of dictionaries.
- vuecore.wgcna.plot_intramodular_correlation(MM, FS, feature_module_df, title, width=1000, height=800)[source]#
This function uses the Feature significance and Module Membership measures, and plots a multi-scatter plot of all modules against all clinical traits.
- Parameters:
MM – pandas dataframe with module membership data
FS – pandas dataframe with feature significance data
feature_module_df – pandas DataFrame of experimental features and module colors (use mode=’dataframe’ in get_FeaturesPerModule)
title (str) – plot title
width (int) – plot width
height (int) – plot height
- Returns:
Plotly object figure.
Example:
plot = plot_intramodular_correlation(MM, FS, feature_module_df, title='Plot', width=1000, height=800):
Note
There is a limit in the number of subplots one can make in Plotly. This function limits the number of modules shown to 5.
- vuecore.wgcna.plot_labeled_heatmap(df, textmatrix, title, colorscale=[[0, 'rgb(0,255,0)'], [0.5, 'rgb(255,255,255)'], [1, 'rgb(255,0,0)']], width=1200, height=800, row_annotation=False, col_annotation=False)[source]#
This function plots a simple Plotly heatmap with column and/or row annotations and heatmap annotations.
- Parameters:
df – pandas dataframe containing data to be plotted in the heatmap.
textmatrix – pandas dataframe with heatmap annotations as values.
title (str) – the title of the figure.
colorscale (list[list]) – heatmap colorscale (e.g. [[0,’rgb(0,255,0)’],[0.5,’rgb(255,255,255)’],[1,’rgb(255,0,0)’]])
width (int) – the width of the figure.
height (int) – the height of the figure.
row_annotation (bool) – if True, adds a color-coded column at the left of the heatmap.
col_annotation (bool) – if True, adds a color-coded row at the bottom of the heatmap.
- Returns:
Plotly object figure.